Auringon ja kuun ystäville

Aloittaja miihkali, perjantai, 07.10.2011, 14:04

« edellinen - seuraava »

0 Jäsenet ja 1 Vieras katselee tätä aihetta.

miihkali

Ohessa ikivanha, mutta hyvin ja tarkasti toimiva ohjelmapätkä. Omat longitudit ja latitudit vaihtamalla pysyy hyvin mukana auringon ja kuun nousuissa sekä laskuissa. Linuxissa toimii, mutta vintoosasta en osaa sanoa yhtikäs mitään. On muuten vieläpä VAX:lle tehty alunperin.

SUNMOON.c

/* <sdate.c>
* Compute various useful times
*
* Written by Marc T. Kaufman
*            14100 Donelson Place
*            Los Altos Hills, CA 94022
*            (415) 948-3777
*
* Based on : "Explanatory Supplement to the Astronomical Ephemeris
*             and the American Ephemeris and Nautical Almanac",
*             H.M. Nautical Almanac Office, London.  Updated from
*             equations in the 1985 Astronomical Almanac.
*
* Copyright 1986 by Marc Kaufman
*
* Permission to use this program is granted, provided it is not sold.
*
* This program was originally written on a VAX, under 4.2bsd.
*  it was then ported to a 68000 system under REGULUS (Alcyon's version
*  of UNIX system III).  Major differences included: no 'double' and
*  a default integer length of 'short'.  Having been through all that,
*  porting to your machine should be easy.  Watch out for 'time' related
*  functions and make sure your 'atan2' program works right.
*
* 850210 revised to 1985 Ephemeris - mtk
*/

#include <time.h>
#include <sys/types.h>
#include <sys/timeb.h>
#include <stdio.h>
#include <math.h>

long UTC, TDT, tim, tim2, localdst;
double Julian_Day, MJD, Tu, Ru, T70, Local, GMST, LST;
double Eqt, Tua, L, G, e, eps, g, alpha, delta, sd, cd, lha, lhr, sh, ch;
double la, lf, S, C, sp, cp, tp, Az, alt;
double Lm, lm, px, SD, am, dm;
double zs, x;
double fabs(), fmod(), asin(), acos();
struct tm *t, *Rlocaltime(), *gmtime();
char *tdate, *gmctime(), *localctime();
int ftime();
struct timeb tb;

#define Pi 3.1415926535
#define Degree_to_Radian ((2.0 * Pi)/ 360.)
#define Asec_Radian ((2.0 * Pi)/(360. * 60. * 60.))
#define Tsec_to_Radian ((2.0 * Pi)/( 24. * 60.* 60.))
#define Asec_to_Tsec (24./360.)
#define Sec_per_day (24 * 60 * 60)
#define Round 0.5 /* for rounding to integer */

#define J1900 /* 24 */15020.0 /* Julian Day number at Epoch 1900.0 */
#define J1970 /* 24 */40587.5 /* VAX clock Epoch 1970 Jan 1 (0h UT) */
#define J1985 /* 24 */46065.5 /* Epoch 1985 Jan 1 (0h UT) */
#define J2000 /* 24 */51545.0 /* Epoch 2000 Jan 1 (12h UT) */
#define Delta_T (54.6 + 0.9*(Julian_Day - J1985)/365.) /* TDT - UT */
/* (This is the position of my house ) */
#define Longitude (((-29.)*60. + 11.)*60. + 00.) /* Arc-seconds East */
#define Latitude ((( 64.)*60. + 27.)*60. + 00.) /* Arc-seconds North */
#define f1 (1. - (1./298.25)) /* 1 - flattening of Earth */
/* the following alternate values are useful when debugging */
/*#define Longitude (((000.)*60. +  0.)*60. +  0.) /* Arc-seconds West */
/*#define Latitude ((( 35.)*60. +  0.)*60. +  0.) /* Arc-seconds North */
/*#define f1 1. /* 1 - flattening of Earth */

main() {

/* at this point we digress to discuss UNIX differences.
* In UCB UNIX we dont have ctime(), but do instead have asctime(),
*  which works from the structures created by gmtime() and localtime().
* However, system time is kept in UTC (Greenwich), and the localtime
*  routine correctly handles daylight savings time.
* Since the Regulus system only knows local time, a few direct
*  fiddles are needed.
*/

/* correct apparent latitude for shape of Earth */

lf= atan(f1*f1 * tan(Latitude * Asec_Radian));
sp= sin(lf);
cp= cos(lf);
tp= sp/cp;

time(&UTC); /* get time */
Local= - Longitude/15.; /* Local apparent time correction */

{ int h, m, s; /* manual entry mode */
/* time(&tim);
t= gmtime(&tim);
tim= tim - (60 * (60 * t->tm_hour + t->tm_min) + t->tm_se);
scanf("%d %d %d", &h, &m, &s);
{UTC = tim + 60 * (60 * h + m) + s;
*/ }

/* ! t= gmtime(&UTC); /* this is Regulus time */
t= localtime(&UTC); /* VAX version */

/* Compute delta to real UTC from time zone time */

/* do this by hand since Regulus wont */

switch (t->tm_mon + 1) /* months are numbered from 0 */
{
case 1:
case 2:
case 3:
case 11:
case 12:
t->tm_isdst = 0;
break;

case 5:
case 6:
case 7:
case 8:
case 9:
t->tm_isdst = 1;
break;

case 4:
if ((t->tm_mday < 24) || (t->tm_mday - t->tm_wday <= 24))
t->tm_isdst = 0;
else
t->tm_isdst = 1;
break;

case 10:
if ((t->tm_mday < 25) || (t->tm_mday - t->tm_wday <= 25))
t->tm_isdst = 1;
else
t->tm_isdst = 0;
break;
}
ftime(&tb); /* gets time-zone information */
if (tb.dstflag == 0)
t->tm_isdst = 0; /* dst never used here */
localdst = (-tb.timezone + t->tm_isdst*60) * 60L; /* local time correction */

/* ! UTC -= localdst; /* this is real UTC, not what the OS gave us! */
printf("%.24s GMT\n", gmctime(&UTC));

stuff(UTC); /* start with local time info */

/* Compute Terrestrial Dynamical Time (this used to be called Ephemeris Time) */

TDT = UTC + (long)(Delta_T + Round);
tdate= gmctime(&TDT);
printf("           %.8s      Terrestrial Dynamical Time\n", tdate+11);

printf("%.24s Local Civil Time\n", localctime(&UTC));

tim2 = UTC + (long)(Local + Round); /* Compute Local Solar Time */
tdate= gmctime(&tim2);
printf("           %.8s      Local Mean Time\n", tdate+11);

/* compute phase of moon */

moondata(UTC);
Lm = fmod(Lm-L, 360.); /* phase is Lm - L (longitude of Sun) */
lm = fmod(Lm, 90.); /* excess over phase boundary */
printf("The Moon is%4.1f days past ", lm*36525./481267.883);
if (Lm <  90.) printf("New\n");
else if (Lm < 180.) printf("First Quarter\n");
else if (Lm < 270.) printf("Full\n");
else printf("Last Quarter\n");

printf("Julian Day  24%9.3f\n", Julian_Day);

tim2 = GMST + Round;
tdate= gmctime(&tim2);
printf("           %.8s      Greenwich Mean Sidereal Time\n", tdate+11);

tim2 = LST + Round;
tdate= gmctime(&tim2);
printf("           %.8s      Local Sidereal Time\n", tdate+11);

tim2= lha + Round;
tdate= gmctime(&tim2);
printf("           %.8s      L.H.A. of Sun\n", tdate+11);
printf("            %11.3f  Degrees Declination\n",delta/3600.);
printf("Azimuth     %11.3f  Degrees\n",Az/3600.);
printf("Elevation   %11.3f  Degrees\n",alt/3600.);

/* compute sunrise and sunset */
t= Rlocaltime(&UTC); /* compute start of day */
tim = UTC - (3600L * t->tm_hour + 60L * t->tm_min + t->tm_sec)
+ Sec_per_day/2; /* about noon */

zs = 90. + 50./60.; /* zenith angle of rise/set */
sunrise(tim, -1.0, zs, "Sunrise ");
printf("       ");
sunrise((long)(tim+Sec_per_day), -1.0, zs, "Tomorrow");
printf("\n");
sunrise(tim, 1.0, zs, "Sunset  ");
printf("       ");
sunrise((long)(tim+Sec_per_day), 1.0, zs, "Tomorrow");
printf("\n");

/* compute moonrise and moonset */
tim = tim - Sec_per_day/2 - 31; /* about start of day */

zs = 90. + 34./60.; /* zenith angle of rise/set */
moonrise(tim, -1.0, zs, "Moonrise");
printf("       ");
moonrise((long)(tim+Sec_per_day), -1.0, zs, "Tomorrow");
printf("\n");
moonrise(tim, 1.0, zs, "Moonset ");
printf("       ");
moonrise((long)(tim+Sec_per_day), 1.0, zs, "Tomorrow");
printf("\n");
}

sunrise(t0, rs, z, s)
long t0;
double rs, z;
char *s;
{
double cz, dh;
long dt;

cz = cos(z * Degree_to_Radian); /* zenith distance of phenomonon */

do { /* iterate */
stuff(t0); /* compute declination and current hour angle */
dh= -tp*sd/cd + cz/(cp*cd);
if ((dh < -1.0) || (dh > 1.0)) {
printf("%.8s   none   ", s);
return;
}
dh=acos(dh)*rs;
dt= (dh - lhr) / Tsec_to_Radian;
t0 += dt;
} while (dt);

t0 += 30 /* seconds, rounding to nearest minute */;
tdate= localctime(&t0);
printf("%.8s   %.5s  ", s, tdate+11);
}

moonrise(t0, rs, z, s)
long t0;
double rs, z;
char *s;
{
#define SRATE 1.033863192 /* ratio of Moon's motion to Sun's motion */
double cz, dh, sd, cd;
long t1, dt;

moondata(t0); /* get starting declination of Moon */

/* compute zenith distance of phenomonon */
cz = cos(z * Degree_to_Radian + SD /* -px */);

/* first iteraton is forward only (to approx. phenom time) */
sd = sin(dm);
cd = cos(dm);
dh= -tp*sd/cd + cz/(cp*cd);
if ((dh < -1.0) || (dh > 1.0)) {
printf("%.8s   none   ", s);
return;
}
dh= acos(dh)*rs;
dt= fmod((dh - am), 2.0*Pi) * SRATE / Tsec_to_Radian;
t1 = t0 + dt;

do { /* iterate */
moondata(t1); /* compute declination and current hour angle */
cz = cos(z * Degree_to_Radian + SD /* -px */);
sd = sin(dm);
cd = cos(dm);

dh= -tp*sd/cd + cz/(cp*cd);
if ((dh < -1.0) || (dh > 1.0)) {
printf("%.8s   none  ", s);
return;
}
dh= acos(dh)*rs;
dt= (dh - am) * SRATE / Tsec_to_Radian;
t1 += dt;
} while (dt);

if ((t1 - t0) >= Sec_per_day) {
printf("%.8s   none   ", s);
return;
}
t1 += 30 /* seconds, rounding to nearest minute */;
tdate= localctime(&t1);
printf("%.8s   %.5s  ", s, tdate+11);
}

stuff(tim)
long tim;
{ /* main computation loop */

timedata(tim);

/* where is the Sun (angles are in seconds of arc) */
/* Low precision elements from 1985 Almanac   */

L= 280.460 + 0.9856474 * MJD; /* Mean Longitde */
L = fmod(L, 360.); /* corrected for aberration */

g= 357.528 + 0.9856003 * MJD; /* Mean Anomaly */
g = fmod(g, 360.);

eps= 23.439 - 0.0000004 * MJD; /* Mean Obiquity of Ecliptic */

{ /* convert to R.A. and DEC */
double Lr, gr, epsr, lr, ca, sa, R;
double sA, cA, gphi;

Lr = L * Degree_to_Radian;
gr = g * Degree_to_Radian;
epsr = eps * Degree_to_Radian;

lr = (L + 1.915*sin(gr) + 0.020*sin(2.0*gr)) * Degree_to_Radian;

sd = sin(lr) * sin(epsr);
cd = sqrt(1.0 - sd*sd);
sa = sin(lr) * cos(epsr);
ca = cos(lr);

delta = asin(sd);
alpha = atan2(sa, ca);

/* equation of time */
Eqt= (Lr - alpha) / Tsec_to_Radian;

delta = delta / Asec_Radian;
alpha = alpha / Tsec_to_Radian;

lhr = (LST - alpha) * Tsec_to_Radian;
sh =  sin(lhr);
ch =  cos(lhr);
lhr= atan2(sh, ch); /* normalized -pi to pi */
lha= lhr / Tsec_to_Radian + Sec_per_day/2;

/* convert to Azimuth and altitude */

alt = asin(sd*sp + cd*ch*cp);
ca =  cos(alt);
sA =  -cd * sh / ca;
cA =  (sd*cp - cd*ch*sp) / ca;
Az = atan2(sA, cA) / Asec_Radian;
Az = fmod(Az, 1296000. /* 360.*3600. */);
alt = alt / Asec_Radian;
}
}

moondata(tim)
long tim;
{
double lst, beta, rm, sa, ca, sl, cl, sb, cb, x, y, z, l, m, n;

/* compute location of the moon */
/* Ephemeris elements from 1985 Almanac */

timedata(tim);

Lm= 218.32 + 481267.883*Tu
+ 6.29 * sin((134.9 + 477198.85*Tu)*Degree_to_Radian)
- 1.27 * sin((259.2 - 413335.38*Tu)*Degree_to_Radian)
+ 0.66 * sin((235.7 + 890534.23*Tu)*Degree_to_Radian)
+ 0.21 * sin((269.9 + 954397.70*Tu)*Degree_to_Radian)
- 0.19 * sin((357.5 +  35999.05*Tu)*Degree_to_Radian)
- 0.11 * sin((186.6 + 966404.05*Tu)*Degree_to_Radian);

beta=  5.13 * sin(( 93.3 + 483202.03*Tu)*Degree_to_Radian)
+ 0.28 * sin((228.2 + 960400.87*Tu)*Degree_to_Radian)
- 0.28 * sin((318.3 +   6003.18*Tu)*Degree_to_Radian)
- 0.17 * sin((217.6 - 407332.20*Tu)*Degree_to_Radian);

px= 0.9508
+ 0.0518 * cos((134.9 + 477198.85*Tu)*Degree_to_Radian)
+ 0.0095 * cos((259.2 - 413335.38*Tu)*Degree_to_Radian)
+ 0.0078 * cos((235.7 + 890534.23*Tu)*Degree_to_Radian)
+ 0.0028 * cos((269.9 + 954397.70*Tu)*Degree_to_Radian);

/* SD= 0.2725 * px; */

rm= 1.0 / sin(px * Degree_to_Radian);

lst= (100.46 + 36000.77*Tu) * Degree_to_Radian
+ ((tim % Sec_per_day) + Local) * Tsec_to_Radian;

/* form geocentric direction cosines */

sl= sin(Lm * Degree_to_Radian);
cl= cos(Lm * Degree_to_Radian);
sb= sin(beta* Degree_to_Radian);
cb= cos(beta * Degree_to_Radian);

l= cb * cl;
m= 0.9175 * cb * sl - 0.3978 * sb;
n= 0.3978 * cb * sl + 0.9175 * sb;

/* R.A. and Dec of Moon, geocentric*/

am= atan2(m, l);
dm= asin(n);

/* topocentric rectangular coordinates */

cd= cos(dm);
sd= n;
ca= cos(am);
sa= sin(am);
sl= sin(lst);
cl= cos(lst);

x= rm * cd *ca - cp * cl;
y= rm * cd * sa - cp * sl;
z= rm * sd - sp;

/* finally, topocentric Hour-Angle and Dec */

am = lst - atan2(y, x);
ca = cos(am);
sa = sin(am);
am = atan2(sa,ca);
rm = sqrt(x*x + y*y + z*z);
dm = asin(z/rm);
px = asin(1.0 / rm);
SD = 0.2725 * px;
}

timedata(tim)
long tim;
{

/* compute seconds from 2000 Jan 1.5 UT (Ephemeris Epoch) */
/* the VAX Epoch is     1970 Jan 1.0 UT (Midnight on Jan 1) */

Julian_Day = (tim/Sec_per_day) +
(double)(tim % Sec_per_day)/Sec_per_day + J1970;
MJD= Julian_Day -J2000; /* Julian Days past Epoch */
Tu = MJD/36525.; /* Julian Centuries past Epoch */

/* compute Sidereal time */

Ru= 24110.54841 + Tu * (8640184.812866
+ Tu * (0.09304 - Tu * 6.2e-6)); /* seconds */
GMST = (tim % Sec_per_day) + Sec_per_day + fmod(Ru, (double)Sec_per_day);
LST  = GMST + Local;
}

/* time functions, for Regulus */
char *gmctime(t) /* re-hack for VAX, since ctime gives local */
long *t;
{
long t1;

t1 = *t - localdst; /* convert to local time */
return(ctime(&t1));
}

char *localctime(t)
long *t;
{
long t1;

t1 = *t + localdst; /* convert to local time */
return(gmctime(&t1));
}

struct tm *Rlocaltime(t)
long *t;
{
long t1;

t1 = *t + localdst; /* convert to local time */
return(gmtime(&t1));
}

/* double precision modulus, put in range 0 <= result < m */
double fmod(x, m)
double x, m;
{
long i;

i = fabs(x)/m; /* compute integer part of x/m */
if (x < 0) return( x + (i+1)*m);
else return( x - i*m);
}



Mukaan vielä näyte konsolitulostuksesta:

[amilo@localhost ~]$ moontime
Fri Oct  7 10:54:02 2011 GMT
          10:55:21      Terrestrial Dynamical Time
Fri Oct  7 13:54:02 2011 Local Civil Time
          12:49:29      Local Mean Time
The Moon is 2.8 days past First Quarter
Julian Day  2455841.954
          10:57:00      Greenwich Mean Sidereal Time
          12:52:27      Local Sidereal Time
          12:01:33      L.H.A. of Sun
                -5.455  Degrees Declination
Azimuth         196.202  Degrees
Elevation        18.797  Degrees
Sunrise    07:31         Tomorrow   07:34  
Sunset     18:13         Tomorrow   18:09  
Moonrise   17:01         Tomorrow   17:02  
Moonset    01:28         Tomorrow   02:56  

J.Jäntti

EDIT / MOVE: Ylläpito suoritti pienen muokkaustoimenpiteen niin C-koodin, kuin konsolitulosteen luettavuuden puolesta.
Juha Jäntti
Foorumin ja sivuston ylläpitäjä
Finland Weather Exchange (FinWX)

http://www.finwx.net/
------------------------------------------
Ukkoskausi avattu Suomessa: --.--.2024
Ukkoskausi avattu Helsingissä: --.--.2024
-------------------------------------------
Ukkospäivälaskuri 2024; Helsinki/Viikinmäki
0 ukkospäivää.
------------------------------------------
X, FinWX:n ylläpidon ilmoitukset
------------------------------------------